Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29359, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655345

RESUMO

Oligodendrocytes (OL) are myelin-forming glial cells in the central nervous system. In vitro primary OL culture models offer the benefit of a more readily controlled environment that facilitates the examination of diverse OL stages and their intricate dynamics. Although conventional methods for primary OL culture exist, their performance in terms of simplicity and efficiency can be improved. Here, we introduce a novel method for primary OL culture, namely the E3 (easy, efficient, and effective) method, which greatly improves the simplicity and efficiency of the primary OL culture procedure using neonatal rodent brains. We also provided the optimal media composition for the augmentation of oligodendrocyte progenitor cell (OPC) proliferation and more robust maturation into myelin-forming OLs. Overall, E3 offers an undemanding method for obtaining primary OLs with high yield and quality. Alongside its value as a practical tool, in vitro characteristics of the OL lineage additionally identified during the development of the E3 method have implications for advancing research on OL physiology and pathophysiology.

2.
Sci Rep ; 14(1): 8723, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622273

RESUMO

The Alpha stent is an intracranial closed-cell stent with a unique mesh design to enhance wall apposition. It recently underwent structural modifications to facilitate easier stent deployment. This study aimed to evaluate the safety and efficacy of stent-assisted coil embolization for unruptured intracranial aneurysms using the Alpha stent. Between January 2021 and November 2021, 35 adult patients with 35 unruptured intracranial aneurysms in the distal internal carotid artery were prospectively enrolled. For efficacy outcomes, magnetic resonance angiography at the 6-month follow-up was evaluated using the Raymond-Roy occlusion classification (RROC). The safety outcome evaluated the occurrence of symptomatic procedure-related neurological complications up to 6 months postoperatively. Technical success was achieved in 34/35 (97.1%). Six months postoperatively, aneurysm occlusion showed RROC I in 32/35 (91.4%) and RROC II in 3/35 (8.6%) patients. Procedure-related neurologic complications occurred in one patient (2.9%) who experienced hemiparesis due to acute lacunar infarction, which resulted in a 6-month mRS score of 1. The Alpha stent demonstrated excellent efficacy and safety outcomes in stent-assisted coil embolization of unruptured distal ICA aneurysms. The recent structural modifications allowed for easier stent delivery and deployment.Clinical trial registration number: KCT0005841; registration date: 28/01/2021.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Adulto , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Resultado do Tratamento , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Stents/efeitos adversos , Prótese Vascular , Angiografia Cerebral/métodos , Estudos Retrospectivos
3.
World Neurosurg ; 186: 87-94, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522785

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is a debilitating condition characterized by sudden, excruciating facial pain due to neurovascular compression of the trigeminal nerve. Stent deployment can change the course of the superior cerebellar artery upwards, possibly releasing the root entry zone of the trigeminal nerve. We developed a novel stent, the Transform stent, for TN treatment, and evaluated its mechanical properties using benchtop and in vitro hemocompatibility tests. METHODS: We compared the performance of Transform and Enterprise stents in treating TN because they share similar self-expanding closed-cell features in the manufacturing process, are derived from nitinol tubes, and are fabricated through a laser-cutting process, but also because only the safety of Enterprise stents deployed in intracranial arteries has been reported clinically. All benchtop measurements, including radial force, trackability, bending stiffness, and conformability, were performed thrice for each stent model, and their average values are presented. RESULTS: Transform stents showed higher radial forces in vessels of diameters ranging from 1.0 mm than Enterprise stents. The trackability of the Transform stent was better than that of the Enterprise stent in a neurovascular model. Bending stiffness was stronger in the Transform stent whereas conformability was superior in the Enterprise stent. No significant thrombogenic issues were observed in the in vitro hemocompatibility tests. CONCLUSIONS: This study demonstrated the Transform stent as a potential option and paved the way for innovative endovascular approaches for the future TN treatment. Namely, the study confirmed that the characteristics of Transform stents at benchtop and in vitro evaluations may be used as a first step for studies such as in vivo pre- and clinical studies.

4.
Heliyon ; 9(10): e20629, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860540

RESUMO

This report describes the direct electrolysis of treated wastewater (as a catholyte) to produce hydrogen and potentially reuse the water. To suppress the negative shift of the cathodic potential due to an increase in pH by the hydrogen evolution reaction (HER), the treated wastewater is acidified using the synergetic effect of protons generated from the bipolar membrane and inorganic precipitation occurred at the surface of the cathode during the HER. Natural seawater, as an accessible source for Mg2+ ions, was added to the treated wastewater because the concentration of Mg2+ ions contained in the original wastewater was too low for acidification to occur. The mixture of treated wastewater with seawater was acidified to pH 3, allowing the initial cathode potential to be maintained for more than 100 h. The amount of inorganic precipitates formed on the cathode surface is greater than that in the control case (adding 0.5 M NaCl instead of seawater) but does not adversely affect the cathodic potential and Faradaic efficiency for H2 production. Additionally, it was confirmed that less organic matter was adsorbed to the inorganic deposits under acidic conditions. These indicate that acidification plays an important role in improving the performance and stability of low-grade water electrolysis. Considering that the treated wastewater is discharged near the ocean, acidification-based electrolysis of the effluent with seawater can be a water reuse technology for green hydrogen production, enhancing water resilience and contributing to the circular economy of water resources.

5.
ACS Appl Mater Interfaces ; 15(29): 35149-35160, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439627

RESUMO

In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (ΔVth) changed from 3.29 to 0.86 V in the positive bias stress test and from -0.92 to -0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices.

6.
Stroke ; 54(2): 575-586, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36490365

RESUMO

BACKGROUND: The migration of oligodendrocyte precursor cells (OPC) is a key process of remyelination, which is essential for the treatment of white matter stroke. This study aimed to investigate the role of HMGB1 (high mobility group box 1), a damage-associated molecular pattern released from dying oligodendrocytes, as an autocrine chemoattractant that promotes OPC migration. METHODS: The migratory capacity of primary cultured OPCs was measured using the Boyden chamber assay. The downstream pathway of HMGB1-mediated OPC migration was specified by siRNA-induced knockdown or pharmacological blockade of TLR2 (toll-like receptor 2), RAGE (receptor for advanced glycation end product), Src, ERK1/2 (extracellular signal-regulated kinase1/2), and FAK (focal adhesion kinase). Conditioned media were collected from oxygen-glucose deprivation-treated oligodendrocytes, and the impact on OPC migration was assessed. Lesion size and number of intralesional Olig2(+) cells were analyzed in an in vivo model of white matter stroke with N5-(1-iminoethyl)-L-ornithine (L-NIO). RESULTS: HMGB1 treatment promoted OPC migration. HMGB1 antagonism reversed such effects to untreated levels. Among the candidates for the downstream signal of HMGB1-mediated migration, the knockdown of TLR2 rather than that of RAGE attenuated the migration-promoting effect of HMGB1. Further specification of the HMGB1-TLR2 axis revealed that the phosphorylation of ERK1/2 and its downstream molecule FAK, rather than of Src, was decreased in TLR2-knockdown OPCs, and pharmacological inhibition of ERK1/2 and FAK led to decreased OPC migration. Oxygen-glucose deprivation-conditioned media promoted OPC migration, suggesting the autocrine chemoattractant function of HMGB1. In vivo, TLR2(-/-)-mice showed lesser intralesional Olig2(+) cells compared to wild-type controls in response to L-NIO induced ischemic injury regardless of HMGB1 administration. CONCLUSIONS: HMGB1, through the TLR2-ERK1/2-FAK axis, functions as an autocrine chemoattractant to promote OPC migration, which is an initial and indispensable step in remyelination. Thus, a novel treatment strategy for white matter stroke based on the HMGB1-TLR2 axis in the oligodendrocyte lineage could be feasible.


Assuntos
Proteína HMGB1 , Acidente Vascular Cerebral , Substância Branca , Camundongos , Animais , Receptor 2 Toll-Like/metabolismo , Substância Branca/patologia , Linhagem da Célula , Proteína HMGB1/metabolismo , Meios de Cultivo Condicionados/metabolismo , Oligodendroglia/metabolismo , Acidente Vascular Cerebral/patologia
7.
Sci Rep ; 12(1): 6010, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397621

RESUMO

We demonstrated highly transparent and flexible polytetrafluoroethylene (PTFE) passivation for the MoS2/Ag nanowire (Ag NW) electrodes used in thin film heaters (TFHs). The electrical, optical, and mechanical properties of PTFE coated MoS2/Ag NW electrode were compared to the bare MoS2/Ag NW electrode to demonstrate effective passivation of the sputtered PTFE films before and after the 85 °C-85% temperature-relative humidity environment test. In addition, we investigated the performances of TFHs with PTFE/MoS2/Ag NW as a function of PTFE thickness from 50 to 200 nm. The saturation temperature (87.3 °C) of TFHs with PTFE/MoS2/Ag NW electrode is higher than that (61.3 °C) of TFHs with bare MoS2/Ag NW, even after the 85 °C-85% temperature-relative humidity environment test, due to effective passivation of the PTFE layer. This indicates that transparent PTFE film prepared by sputtering process provides effective thin film passivation for the two-dimensional (2D) MoS2 and Ag NW hybrid electrode against harsh environment condition.

8.
RSC Adv ; 12(5): 3055-3061, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425295

RESUMO

In this study, we demonstrated poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) as a composite with Ag nanowire (Ag NW) to enhance the stretchability of the Ag NW network electrode. The composite Ag NW/PEDOT:PSS hybrid ink (AP ink) was prepared at a ratio of 1 : 10, 1 : 20, and 1 : 30, respectively and bar coated on polyurethane substrate. The different ink ratios were studied and optimized with a sheet resistance of 14.93 Ω sq-1. and a transmittance of 88.6% showing a high performance in mechanical stress tests such as bending, folding, rolling, twisting, and stretching. It also showed a conductive bridge effect where the PEDOT:PSS acted as an anchor or support to Ag NW during mechanical strain and PEDOT:PSS also enhanced the electrical conductivity of the Ag NW. Therefore, to prove the real time performance of the electrode as a wearable device, we fabricated transparent electroluminescence devices and thin film heater devices which are highly flexible and demonstrated excellent performance proving that the AP electrode is more suitable candidate for future wearable transparent devices.

9.
Nano Lett ; 22(2): 570-577, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34779637

RESUMO

Multi-valued logic gates are demonstrated on solution-processed molybdenum disulfide (MoS2) thin films. A simple chemical doping process is added to the conventional transistor fabrication procedure to locally increase the work function of MoS2 by decreasing sulfur vacancies. The resulting device exhibits pseudo-heterojunctions comprising as-processed MoS2 and chemically treated MoS2 (c-MoS2). The energy-band misalignment of MoS2 and c-MoS2 results in a sequential activation of the MoS2 and c-MoS2 channel areas under a gate voltage sweep, which generates a stable intermediate state for ternary operation. Current levels and turn-on voltages for each state can be tuned by modulating the device geometries, including the channel thickness and length. The optimized ternary transistors are incorporated to demonstrate various ternary logic gates, including the inverter, NMIN, and NMAX gates.

10.
ACS Nano ; 15(12): 20332-20340, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34866380

RESUMO

The state-of-the-art quantum dot (QD) based light-emitting diodes (QD-LEDs) reach near-unity internal quantum efficiency thanks to organic materials used for efficient hole transportation within the devices. However, toward high-current-density LEDs, such as augmented reality, virtual reality, and head-up display, thermal vulnerability of organic components often results in device instability or breakdown. The adoption of a thermally robust inorganic hole transport layer (HTL), such as NiO, becomes a promising alternative, but the large energy offset between the NiO HTL and the QD emissive layer impedes the efficient operation of QD-LEDs. Here, we demonstrate bright and stable all-inorganic QD-LEDs by steering the orientation of molecular dipoles at the surfaces of both the NiO HTL and QDs. We show that the molecular dipoles not only induce the vacuum level shift that helps alleviate the energy offset between the NiO HTL and QDs but also passivate the surface trap states of the NiO HTL that act as nonradiative recombination centers. With the facilitated hole injection into QDs and suppressed electron leakage toward trap sites in the NiO HTL, we achieve all-inorganic QD-LEDs with high external quantum efficiency (6.5% at peak) and brightness (peak luminance exceeding 77 000 cd/m2) along with prolonged operational stability. The approaches and results in the present study provide the design principles for high-performance all-inorganic QD-LEDs suited for next-generation light sources.

11.
Sci Technol Adv Mater ; 22(1): 875-884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658671

RESUMO

Two-dimensional molybdenum disulfide (MoS2) nanosheets have emerged as a promising material for transparent, flexible micro-supercapacitors, but their use in electrodes is hindered by their poor electrical conductivity and cycling stability because of restacking. In this paper, we report a novel electrode architecture to exploit electrochemical activity of MoS2 nanosheets. Electrochemically exfoliated MoS2 dispersion was spin coated on mesh-like silver networks encapsulated with a flexible conducting film exhibiting a pseudocapacitive behavior. MoS2 nanosheets were electrochemically active over the whole electrode surface and the conductive layer provided a pathway to transport electrons between the MoS2 and the electrolyte. As the result, the composite electrode achieved a large areal capacitance (89.44 mF cm-2 at 6 mA cm-2) and high energy and power densities (12.42 µWh cm-2 and P = 6043 µW cm-2 at 6 mA cm-2) in a symmetric cell configuration with 3 M KOH solution while exhibiting a high optical transmittance of ~80%. Because the system was stable against mechanical bending and charge/discharge cycles, a flexible micro-supercapacitor that can power electronics at different bending states was realized.

12.
Sci Technol Adv Mater ; 22(1): 794-807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552391

RESUMO

We investigated a flexible and transparent conductive electrode (FTCE) based on Ag nanowires (AgNWs) and a graphene oxide (GO) nanosheet and fabricated through a simple and cost-effective spray coating method. The AgNWs/GO hybrid FTCE was optimized by adjusting the nozzle-to-substrate distance, spray speed, compressor pressure, and volume of the GO solution. The optimal AgNWs/GO hybrid FTCE has a high transmittance of 88% at a wavelength of 550 nm and a low sheet resistance of 20 Ohm/square. We demonstrate the presence of the GO nanosheet on the AgNWs through Raman spectroscopy. Using scanning electron microscopy and atomic force microscopy, we confirmed that the nanosheet acted as a conducting bridge between AgNWs and improved the surface morphology and roughness of the electrode. Effective coverage by the GO sheet improved the conductivity of the AgNWs electrode Effective coverage of the GO sheet improved conductivity of the AgNWs electrode with minimum degradation of optical and mechanical properties. Flexible thin film heater (TFH) and electroluminescent (EL) devices fabricated on AgNWs/GO hybrid FTCEs showed better performance than devices on bare AgNWs electrodes due to lower sheet resistance and uniform conductivity. In addition, an AgNWs/GO electrode layer on a facial mask acts as a self-heating and antibacterial coating. A facial mask with an AgNWs/GO electrode showed a bacteriostatic reduction rate of 99.7 against Staphylococcus aureus and Klebsiella pneumonia.

13.
Membranes (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436372

RESUMO

The reverse electrodialysis (RED) stack-harnessing salinity gradient power mainly consists of ion exchange membranes (IEMs). Among the various types of IEMs used in RED stacks, pore-filling ion exchange membranes (PIEMs) have been considered promising IEMs to improve the power density of RED stacks. The compositions of PIEMs affect the electrical resistance and permselectivity of PIEMs; however, their effect on the performance of large RED stacks have not yet been considered. In this study, PIEMs of various compositions with respect to the RED stack were adopted to evaluate the performance of the RED stack according to stack size (electrode area: 5 × 5 cm2 vs. 15 × 15 cm2). By increasing the stack size, the gross power per membrane area decreased despite the increase in gross power on a single RED stack. The electrical resistance of the PIEMs was the most important factor for enhancing the power production of the RED stack. Moreover, power production was less sensitive to permselectivities over 90%. By increasing the RED stack size, the contributions of non-ohmic resistances were significantly increased. Thus, we determined that reducing the salinity gradients across PIEMs by ion transport increased the non-ohmic resistance of large RED stacks. These results will aid in designing pilot-scale RED stacks.

14.
Environ Sci Technol ; 55(16): 11388-11396, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310128

RESUMO

Irreversible faradic reactions in reverse electrodialysis (RED) are an emerging concern for scale-up, reducing the overall performance of RED and producing environmentally harmful chemical species. Capacitive RED (CRED) has the potential to generate electricity without the necessity of irreversible faradic reactions. However, there is a critical knowledge gap in the fundamental understanding of the effects of operational stack voltages of CRED on irreversible faradic reactions and the performance of CRED. This study aims to develop an active control strategy to avoid irreversible faradic reactions and pH change in CRED, focusing on the effects of a stack voltage (0.9-5.0 V) on irreversible faradic reactions and power generation. Results show that increasing the initial output voltage of CRED by increasing a stack voltage has an insignificant impact on irreversible faradic reactions, regardless of the stack voltage applied, but a cutoff output voltage of CRED is mainly responsible for controlling irreversible faradic reactions. The CRED system with eliminating irreversible faradic reactions achieved a maximum power density (1.6 W m-2) from synthetic seawater (0.513 M NaCl) and freshwater (0.004 M NaCl). This work suggests that the control of irreversible faradic reactions in CRED can provide stable power generation using salinity gradients in large-scale operations.


Assuntos
Água Doce , Salinidade , Eletricidade , Fenômenos Físicos , Água do Mar
15.
ACS Appl Mater Interfaces ; 13(23): 27353-27363, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34075756

RESUMO

In order to ensure high-performance semitransparent perovskite solar cells (ST-PSCs), the deposition of high-quality scalable transparent cathodes on ST-PSCs at room temperature is necessary. In this study, we designed an amorphous InGaTiO (IGTO) electrode, prepared by linear facing target sputtering (LFTS) as a transparent cathode for ST-PSCs. Even in the room temperature sputtering process, the amorphous IGTO cathode showed a low sheet resistance of 9.895 Ohm/square and a high optical transmittance of 87.53% without the occurrence of in situ or postannealing, unlike Sn-doped In2O3 (ITO) electrodes. Due to its complete amorphous structure and low energy sputtering, the amorphous IGTO electrode showed superior mechanical properties, when compared to other typical crystalline ITO films. Additionally, the LFTS process led to a low energy deposition of the amorphous IGTO cathode on ST-PSCs, and did not result in plasma damage on perovskite active layers, which is often typical in conventional situations of direct current sputtering. On the basis of these optimized plasma damage-free sputtering conditions, we examined the feasibility of LFTS-grown IGTO cathodes for ST-PSCs. In our results, we observed that a similar performance of the ST-PSC with an IGTO cathode with the opaque PSC with Ag cathode, indicated that amorphous IGTO cathode is a prospective transparent cathode for ST-PSCs on both rigid or flexible substrates.

16.
ACS Nano ; 15(7): 11276-11284, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34184867

RESUMO

The synthesis of uniform low-defect graphene on a catalytic metal substrate is getting closer to the industrial level. However, its practical application is still challenging due to the lack of an appropriate method for its scalable damage-free transfer to a device substrate. Here, an efficient approach for a defect-free, etchant-free, wrinkle-free, and large-area graphene transfer is demonstrated by exploiting a multifunctional viscoelastic polymer gel as a simultaneous shock-free adhesive and dopant layer. Initially, an amine-rich polymer solution in its liquid form allows for conformal coating on a graphene layer grown on a Cu substrate. The subsequent thermally cured soft gel enables the shock-free and wrinkle-free direct mechanical exfoliation of graphene from a substrate due to its strong charge-transfer interaction with graphene and excellent shock absorption. The adhesive gel with a high optical transparency works as an electron doping layer toward graphene, which exhibits significantly reduced sheet resistances without optical transmittance loss. Lastly, the transferred graphene layer shows high mechanical and chemical stabilities under the repeated bending test and exposure to various solvents. This gel-assisted mechanical transfer method can be a solution to connect the missing part between large-scale graphene synthesis and next-generation electronics and optoelectronic applications.

17.
Water Res ; 200: 117255, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062402

RESUMO

Despite significant advances in the field applications of reserve electrodialysis (RED) to produce salinity gradient power, net energy production remains an issue owing to limitations such as high energy requirement for high flow rates of feed solutions, and severe fouling and pressure build up when thin spacers are used. Therefore, to maximize the performance and efficiency of energy harvesting in the RED, a cascaded RED stack, with multiple stages between the anode and cathode electrodes, was investigated. In cascaded stacks, 100-cell paired stacks were divided into several stages, so the feed water flowed into the first stage, and the effluent from the first stage was then reused in the next stages. This cascaded stack could overcome the typical drawbacks of RED (large amount of feed water required, intensive pumping energy, and low net energy production). Although 25% of the feed water volume was used in the 4-stage cascaded stack (100-cell-pairs) compared to the conventional stack (100-cell-pairs with a parallel flow operation), much more energy was produced with the 4-stage cascaded stack. The net power density and net specific energy with the 4-stage cascaded stack were the highest at 0.5 cm/s (0.48 W/m2) and 0.25 cm/s (0.06 kWh/m3), respectively. This is very promising for the practical application of RED since feed water volumes can be greatly reduced, which could reduce the burden on the feed water pretreatment step. Consequently, we can build a compact RED plant with smaller pretreatment processes and fewer RED unit stacks.


Assuntos
Eletricidade , Salinidade , Eletrodos
18.
Micromachines (Basel) ; 12(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668908

RESUMO

We fabricated transparent and flexible silicon oxycarbide (SiOC) hard coating (HC) films on a colorless polyimide substrate to use as cover window films for flexible and foldable displays using a reactive roll-to-roll (R2R) sputtering system at room temperature. At a SiOC thickness of 100 nm, the R2R-sputtered SiOC film showed a high optical transmittance of 87.43% at a visible range of 400 to 800 nm. The R2R-sputtered SiOC films also demonstrated outstanding flexibility, which is a key requirement of foldable and flexible displays. There were no cracks or surface defects on the SiOC films, even after bending (static folding), folding (dynamic folding), twisting, and rolling tests. Furthermore, the R2R-sputtered SiOC film showed good scratch resistance in a pencil hardness test (550 g) and steel wool test under a load of 250 g. To test the impact protection ability, we compared the performance of thin-film heaters (TFHs) and oxide-semiconductor-based thin-film transistors (TFTs) with and without SiOC cover films. The similar performance of the TFHs and TFTs with the SiOC cover window films demonstrate that the R2R-sputtered SiOC films offer promising cover window films for the next generation of flexible or foldable displays.

19.
ACS Omega ; 6(4): 2549-2558, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553873

RESUMO

We investigated simple and unrestricted brush-paintable black electrodes for poly(vinylidene fluoride) (PVDF)-based artistic flexible piezoelectric devices. The conductive black ink for paintable electrodes was synthesized by mixing poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and typical black ink and optimizing the mixing ratio. At an optimal mixing ratio, the brush-paintable black electrodes showed a sheet resistance of 151 Ω/sq and high coatability for flexible piezoelectric devices. Noticeably, higher black ink ratios increased adhesion forces, while diminished the shear flow of the conductive black ink. In addition, the optimized conductive black electrode exhibited an outstanding level of mechanical flexibility due to good adhesion between the black electrode and the PVDF substrate. During the repeated inner/outer bending fatigue tests with high strain, no resistance change confirmed the outstanding flexibility of the brush-paintable conductive electrode. As a promising application of the brush-paintable optimized black electrode, we suggested highly flexible piezoelectric devices that can be used. A PVDF-based piezoelectric speaker and a generator with the brush-paintable black electrode showed acoustic and output signal values approximate to those of metallic electrodes fabricated by vacuum-based high-cost thermal evaporators. Our experiment demonstrated a cost-efficient and simple process for fabricating brush-paintable electrodes, applicable to the flexible PVDF-based piezoelectric devices.

20.
ACS Appl Mater Interfaces ; 13(2): 3463-3470, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33416317

RESUMO

With rapid advances in flexible electronics, transparent conductive electrodes (TCEs) have also been significantly developed as alternatives to the conventional indium tin oxide (ITO)-based material systems that exhibit low mechanical flexibility. Nanomaterial-based alternating materials, such as graphene, nanowire, and nanomesh, exhibit remarkable properties for TCE-based applications, such as high electrical conductivity, high optical transparency, and high mechanical stability. However, these nanomaterial-based systems lack scalability, which is a key requirement for practical applications, and exhibit a size-dependent property variation and inhomogeneous surface uniformity that limit reliable properties over a large area. Here, we exploited a conventional ITO-based material platform; however, we incorporated a transparent molecular adhesive, 4-aminopyridine (4-AP), to improve mechanical flexibility. While the presence of 4-AP barely affected optical transmittance and sheet resistance, it improved interfacial adhesion between the substrate and ITO as well as formed a wavy surface, which could improve the mechanical flexibility. Under various mechanical tests, ITO/4-AP/poly(ethylene terephthalate) (PET) exhibited remarkably improved mechanical flexibility as compared with that of ITO/PET. Furthermore, ITO/4-AP/PET was utilized for a flexible Joule heater application having spatial uniformity of heat generation, voltage-dependent temperature control, and mechanical flexibility under repeated bending tests. This molecular adhesive could overcome the current limitations of material systems for flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...